BAD'DRIVERS
e{t" 5 ¢
€ o, ~

GET OFF THE KERNEL
IF YOU CAN’T DRIVE

WHO ARE WE

Jesse Mickey
Michael Shkatov

@JesseMichael b @HackingThings
ec‘ypswm
A

P4

o T T o T To Do

AGENDA

Beginning

Conclusions
Q&A

| PRIOR WORK

A https://www.secureauth.com/labs/advisories/aswugriverselevationprivilegevulnerabilities

A https://www.secureauth.com/labs/advisories/gigabytriverselevationprivilegevulnerabilities

A https://www.secureauth.com/labs/advisories/asroakiverselevationprivilegevulnerabilities

@ REWll

A https://github.com/rwfpl/rewolf-msi-exploit + Blog post link in Readme

@NOPANdRol{(Ryan Warn¥/ Timothy Harrison

A https://downloads.immunityinc.com/infiltrate201%lidepacks/ryarwarnstimothy-harrisondevice
driver-debaucherymsrmadness/MSR_Madness v2.9 INFILTRATE.pptx

@SpecialHoang

A https://medium.com/@fsx30/weaponizingulnerabledriver-for-privilegeescalationgigabyteedition-
e73ee523598b

@FuzzySec

A https:/lwww.fuzzysecurity.com/tutorials/expDev/23.html

REFERENCES
@matrosov

A https://medium.com/@matrosov/dangerousipdate-tools-c246f7299459

Matt Graeber

A https://posts.specterops.io/threatetectionusingwindowsdefenderapplicationcontrol-deviceguard
iIn-audit-mode-602b48cdlcll

Dave Weston

A https://github.com/dwizzzle/Presentations/blob/master/Bluehat%20Shanghai%20
%20Advancing%20Windows%20Security.pdf

Gal Diskin

A https://media.paloaltonetworks.com/Ip/endpoinsecurity/blog/abrief-analysisof-microsoftpatchguard
msr-protection.html

Cr4sh

A https://github.com/Cr4sh/fwexpl

Application

Windows

BACKGROUND
& Application

DeviceloControl(dev, ioctl, inbuf, insize, ...)

1SandO3y

|IOCTlhandler in driver called with IRP struct
A contains args passed from userspace

1SanO3y

JIDVIN

7 wHalL

Windows Hardware Quality Labs

A Windows drivers
A Slgned Windows
A WHQL signed =~ WHaL

Certified

A New EV signing cert (A Must for Win10 signing process

icrosoft Signatures for kernel mode drivers

New requirements
« During Windows 10 all kernel mode drivers need to be signed by Microsoft
« These signatures are only available by submitting to Sysdev
« Extended Validation (EV) certificates are required to create new submissions
« It's easy for the "bad guys” to sign kernel-mode code today; we're raising the bar
« EV certificates better validate your identity and are much harder to steal
- this means less malware on our end-user’s machines

http://video.ch9.ms/sessions/winhec/2015/files/DDF202%2Z420Introduction%20t0%20Windows%20Driver%20Signing,%20Publishing, ¥20tisf620and%20Servicing.pptx

icrosoft Signatures for kernel mode drivers

New requirements
« During Windows 10 all kernel mode drivers need to be signed by Microsoft
« These signatures are only available by submitting to Sysdev
« Extended Validation (EV) certificates are required to create new submissions
« It's easy for the "bad guys” to sign kernel-mode code today; we're raising the bar
« EV certificates better validate your identity and are much harder to steal
- this means less malware on our end-user’s machines

Only New drivers are affected

« Drivers which are signed prior to Windows 10 RTM will ignore this change
« Drivers for all previous releases of Windows will be unaffected

« User mode drivers are unaffected

http://video.ch9.ms/sessions/winhec/2015/files/DDF202%2Z420Introduction%20t0%20Windows%20Driver%20Signing,%20Publishing, ¥20tisf620and%20Servicing.pptx

DRIVER SIGNING
CERTIFICATE EXPIRED

 LOADS ITANYWAY

pA4

imgflip..

GETTING OUR OWN

Get started with the Hardware Developer Program

The Windows Hardware Developer Program allows you to certify your hardware for Windows and sign and publis
your drivers to Windows Update.

A You must have an Extended Validation (EV) code signing certificate. Please check whether your company
already has a code signing certificdfeyour company already has a certificate, have the certificate available.
You will need the certificate to sign fildSyour company does not have a certificate, you will need to buy one
as part of the registration process.

A You will need to sign in as a global administrator in your organization's Azure Active Directory. If you do not

know whether your organization has an Azure Active Directanytact your IT departmentf your organization
does not have an Azure Active Directory, you will be able to create one for free in the next step.

A You must have the authority to sign legal agreements on behalf of your organization.

GETTING OUR OWN
| DECLARE

il
pi

KNOWN THREATS

A RWEverything

A LoJax

A Slingshot

A Game Cheats and Ariheats CapConand others)
A I\/ISI+ASUS+GIGABYTE+ASROCK

PID: 2D8&

Stealing Tnkun ..

n token: FFFFEABE1BGA

ng for MsiExploit. OCESS. ..

S5: MsiExploit.exe, leﬁﬂ' FFFF2AB642E3B957, PID: CAAS
Reusing token...
Whoami: nt authority\system

Read & Write Everything

Jtility to access almost all hardware interfaces via software

Userspace app + signed RwDrv.sys driver

Driver acts as a privileged proxy to hardware interfaces

A Allows arbitrary access to privileged resources not intended
to be available to usespace

o T I

o T T o

LoJax

-irstUEFI malware found in the wild
mplant tool includes RwDrv.sys driver fr&aVEverything
_oads driver to gain direct access to SPI controller in PCH

Jses direct SPI controller access to rewrite UEFI firmware

Slingshot

A APT campaign brought along its own malicious driver

A Active from 2012 through at least 2018

A Exploited other drivers with read/write MSR to bypass Driver
Signing Enforcement to install kernel rootkit

Motivations

A Privilege escalation frordserspacdo Kernelspace

A Bypass/disable Windows security mechanisms

A Direct hardware access
A Can potentially modify system and device firmware
A Still have lots of issues with unsigned firmware

Attack Scenario #1

Driver Is already on system and loaded
A Access to driver is controlled by policy configured by
driver itself
A Many drivers allow access by nadmin

Attack Scenario #2

Driver Is already on system and not loaded
A Need admin privileges to load driver
A Loaddriver via signed app with UAC from trusted vendor
A Can also wait until admin process loads driver to avoid

needing admin privileges

Attack Scenario #3

Malware brings driver along with it
A Needadmin privilegeso load driver
A Loaddriver via signed app with UAC from trusteehdor
A Can bring older version of driver
A LoJax did this for ithe-wild campaign
A Modified UEFI firmware to install persistent rootkit

A A

Finding drivers

Signed drivers

Focused on drivers from firmware/hardware vendors
Size (< 100KB)

rdmsrwrmsr, movcrN, in/out opcodes are big hints
WindowsDriver Model vs Windows Driver Framework

Finding drivers

Windows Driver Model

RtlInitUnicodeString{&DestinationString, L"\\Device\\AsrDru181™);
RtlInitUnicodeString{&SymbolicLinkHame, L"\\DosDevices\\AsrDru181");
result = IoCreateDevice{v1, Bx4Bu, &DestinationString, @x22u, B8, @, &Gui);
if { result >= 8)

v3d = IoCreateSymboliclink{&SymboliclLinkMame, &DestinationString);

if (vl »= 8

{
vi->HajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)&sub_11888;
vi->MajorFunction[IRP_HJ CLOSE] = (PDRIVER DISPATCH)}&sub 110808;
vi->MajorFunction[IRP_HMJ DEUVICE COHTROL] = (PDRIVER DISPATCH)ioctl handler;
ul->DriverlUnload = {(PDRIVER UHLDAD)sub 11838;

Windows Driver Framework

result = WdfUersionBind{DriverDbject, &RegistryPath, &WdfUersion, &WdfDriverGlobals});

WdfUersion ; DATA XREF: sub_1480810806+4T0
; sub_146081808+17To ...
a

offset aKmdflibrary ; “EmdfLibrary"

1 ; WdfHajorUersion

9 ; WdfHinorVersion

1DB Bh ; WdfBuildHumber

18Ch ; NumWldfFunctions

offset WdfFunctions ; Pointer to array of Functions to be filled by UWDF Library

Finding drivers

loCreateDevicgs.WdmlibloCreateDeviceSecure

Security Descriptor Definition Language (SDDL)
A Used to specify security policy for driver

Example:
A D:P(A;;GA;;SY)(A;;GA;;;BA)

DACL that allows:
A GENERIC_ALL to Local System
A GENERIC_ALL to BiriliAdministrators

Finding drivers

ASpent 2 weeks looking for drivers

AWe skimmed though hundreds of files
AAt least 42 vulnerable signed x64 drivers
AFound others since\ () /[

NOW WHAT

What can we do from user space with a bad driver?
Kernel virtual memory access

Physical memory access

MMIO access

MSR access

Control Register access

PCI device access

SMBUS access

A And more...

o oo To T I o Do

Arbitrary Ring0 memcpy

A Canbe used to patch %%I}%II:EEEEEE?Tiﬁgsrzggigﬁrgc;izi?E—}FISSut:iatEl:IIr‘p.SyStemBuFFEF;
kernel code and data et = inbuiosdest:
structures cre - imofoares . | o
A Steal tokens’ elevate g?gl;r}.fsaaggigzgz,?r‘c=—-:;x,512E=z.;l:l » Lnbuf->dest, inbuf-2>src, {unsigned int)size};
privileges, etc botze 1oft = sizer U
A PatchGuard can catch ¢
__ i byte_val = {dest++)[src_dst_delta];
some modifications, e T Lute vans
but not all hile { bytes left }):

b
result = Bi6h;

Arbitrary Physicallemory Write

A Can perform MMIO access
to PCIe and Other .jﬁgsigiia:;p:dﬁgggﬂlESa:;;g'gE::glI.[;:HL_HDDHESS}iuctl_inhuF—>phyS_addr, ioctl inbuf-»size, @);

if { mapped_addr)

{

src_ptr = {char =)ioctl inbuf->virt_addr;
. bytes left = ioctl _inbuf->size;
A AnothermeChanlsm to dst_ptr = {char =)mapped_addr; /7 physical address remapped into wirtual address space
while { bytes left)
{
atCh kernel COde and da item size = ioctl inbuf->item size; /f copy by dwords, words, or bytes
P
if { item size) // item_size = @ means copy byte-by-byte
{
StrUCtureS item_size_sub_1 = item_size - 1;
A if { item size sub 1) // item_size = 1 means copy word-by-word
i
Steal tOkenS’ elevate if { item size sub 1 == 1) // item_size = 2 means copy dword-by-duword
oo {
prIV”egeS,etC dword_wval = ={ DWORD =})}src_ptr;

src ptr += Lj

A PatchGuaratan catch L et i - o
some modifications, T —
but not all

A Partial mitigation in
Win 10 1803

Lookup Physical Address from Virtual Addres

signed intéd fastcall ioctl get phys from vwirt({ int64 al, IRP =a2)

A Useful when dealing with IOCTLsS that S_G_l_gm__.

provide Read/Write using physical incen vart_aaars 1 o
unsigned int vé; // ebx@1

addresses signed _ int6h result; J/F rax@?

u? = aZ-»AssociatedIrp._SystemBuffer;

az-»IoStatus.Information = BiG4;

3 = az2;

virt_addr = =u2;

DbgPrint("Default UA=%x", =u2};

LODMORD{phys_addr) = MmGetPhysicalAddress{virt addr});

uli = phys_addr;

DbgPrint{"Physical Address=%x,dwlLins=%x", phys_addr, virt_addr};
if (vG)

{

DbgPrint("Physical Address=%x", vi);
*={_ DUWORD =)uv2 = wva;
u3-»IoStatus.Information = 4i64;
result = BiGh;

H

else

{
Fesult = STATUS_THUALID _PARAMETER;

¥

return result;

Arbitrary MSR Read

if (ioctl num == B<9C4B26884)

Model Specific Registers ¢
.. ") " il = reader _uwrapper(
A Originally used for "experimental” features not irp->RssociatedIrp.SystenBuffer,
. irsp->Parameters.DeviceloControl.InputBufferLength,

A guaranlt/leseg tohbe preserl;t In fu'tlure F;rodcessorsh 1r§pi§::g§:ngtsg;|.Eeﬁgigizg:iﬂl.I]utputBuFFerLength,

ome S have now been classified as architect Lostatus_info_ptr);

: goto LABEL_59;
and will be supported by all future processors :

A MSRs can be pegrackage, pecore, or petthread
A Access to these registers are winsrandwrmsr

()F)(:()(jf?f; int6éd fastcall readmsr_wrapper{inbuf _ msyr_struct =inbuf, intéhs inbuf size, QU

A Only acceSSIbIe by Rlngo unsigned intéd4 msr_value; /7 raxiE2i

msi value = _ readmsr{inbuf->msr_addr);

zoutbuf = {{unsigned int&4)YHIDWORD(msr value) <{ 32} | {(unsigned int)msr value;
xguthbuf size = 8;

return BiG4;

Arbitrary MSR Write

if (ioctl num == Bx9C4HA2088)

Securitycritical architectural MSRs

A STAR (0xC0000081) vi1 = writensr_wrapper(]
)) irp-*AssoclatedIvp.SystemBuffer,
A SYSCALL EIP address and Ring 0 and Ring 3 Segment bg irsp->Paraneters.DeviceloControl. InputBufferLengtn,
A LSTAR (OXCOOOOOSZ) 1:'gp—}g§2;llngtgr5'.El;uyigeilag[::ntﬁ:]i.I]utputBuFFerLength,
A The kernel's RIP for SYSCALL entry for 64 bit software goto LABEL a; oPEES
A CSTAR (0xC0000083) y -

A The kernel's RIP for SYSCALL entry in compatibility mode

int64 fastcall writemsr_wrapper{inbuf msr_struct =inbuf, inté4 inbuf size, void =outbuf,

unsigned int6d uS; FF rdz@1

i i i i TaY Y5 = {unsigned _ inté4)inbuf->msr_wvalue >> 32;
EntrypOIntS Used In tranS|t|0n from R|n93 tO Rln __writemsr(inbuf->mnsr_addr, LODWORD(inbuf->msr_walue), HIDWORD{inbuf->msr_value});
®*iostatus_info_ptr = 8;
return BiG4;

Arbitrary Control Register Read

CRO contains key processor control bits:
A PE: Protected Mode Enable

A WP: Write Protect

A PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional securrgievant control bits:

A UMIP: UseMode Instruction Prevention

A VMXE: Virtual Machine Extensions Enable

A SMEP: Supervisor Mode Execution Protection Enable
A SMAP: Supervisor Mode Access Protection Enable

if { ioctl_inbuf->which_cr)
{
switch { ioctl inbuf->which_cr }
1
case 2:
cr value = readcr2()};
break ;
case 3:
cr_wvalue = _ readcr3(};
break ;
case u:
cr_value = _ readcrid();
break ;
default:
if { ioctl _inbuf->which_cr *= 8)
{
az-»IoStatus.Information = BiGL;
az->Io5tatus.Status = STATUS_UWSUCCESSFUL;
goto LABEL 135;
H
cr_wvalue = _ readcr8();
break;
H
h
else
{
cr_walue = _ readcr8(};

¥
ioctl_inbuf->cr_wvalue = cr_value;

Arbitrary Control Register Write

CRO contains key processor control bits:
A PE: Protected Mode Enable

A WP: Write Protect

A PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional securrgievant control bits:

A UMIP: UseiMode Instruction Prevention

A VMXE: Virtual Machine Extensions Enable

A SMEP: Supervisor Mode Execution Protection Enable
A SMAP: Supervisor Mode Access Protection Enable

if { ioctl inbuf->which_cr)

{

h

switch { ioctl inbuf->which_cr)
{
case 3:
__writecr3{ioctl inbuf-»cr_value);
break;
case 4:
__writecrd(ioctl inbuf-»cr_wvalue);
break;
case 8:

__writecr8{ioctl inbuf-*cr_value); |
break;

default:
aZ2-:IoStatus.5tatus = STATUS _UNSUCCESSFUL;
break;

}

else

{
b

__writecr@{ioctl inbuf->cr_value);

Arbitrary 10 Port Write

A Impact is platform dependent
A Can potentia”y be used to m0d|fy OIS =B alo Ml ir ¢ ioctl num == 0x9CHOABCE || ioctl num == OxICHOAGDS || ioctl num

(jea\/i(:eefirrT]\AIEirEE ¢ ;gﬁEiﬁiEDEFi:ciiigﬂgagggﬁiﬁzfﬁﬁm?}irp—>9550ciatedlrp.SyStemBuFFer;
A Servers may have ASPEED BMC with §F (octinun == Bx9CH0A00S)

Pantdownvulnerability which provides Gove LhbEL g5 oCtInburport thilue);

read/write into BMC address space %F (foctl_num == Bx9C4BABDC)
A Laptops likely have embedded Tor e Doy Ty Joct nbufmoport_value);

controller (ECYyeachable via 10 port access Y6 (focti nun - Bx9CHOROED)
{

_ outdword{port_num, ioctl inbuf->port_value};
goto LABEL_65;

A Can potentially be used to perform legacy PCI ;
access by accessing ports OxCF8/0xCFC

Arbitrary Legacy PCI Write

A Impact is platform dependent
A Canpotentially be used to modify UEFI and deviceware

A Issues with overlapping PCI device BAR over memory regions
A Overlapping PCI device over TPM region
A Memory hole attack

+
(ioctl _inbuf->deu + 32
(ioctl _inbuf->bus + {{{{{unsigned int)ioctl inbuf->offset >> 8) & BxF) + 128) < 8)))) << 8));
__outdword({{ioctl inbuf->offset & 3) + BxCFC, ioctl inbuf->write_value);

Kernel Code Execution via MSR

LSTAR MSR

User Memory Kernel Memory

Ring0 Entry Point

Kernel Code Execution via MSR

LSTAR MSR

User Memory Kernel Memory

Ring0 Payload

It's a little more complicated than that...

Supervisor Mode Execution Prevention (SMEP)

A Feature added to CPU to prevent kernel from executing code from user pages
A Attempting to execute code in user pages when in Ring0 causes page fault
A Controlled by bit in CR4 register

Need to read CR4, clear CR4.SMEP bit, write back to CR4
A This can be done via Read/Write CR4 IOCTL primitive or via ROP in payload

It's a little more complicated than that...

A Payload starts executing in Ring0, but hasn't switched to kernelspace yet
A Need to execute swapgs as first instruction
A Also need to execute swapgs before returning from kernel payload

A Kernel Page Table Isolation (KPTI)
A New protection to help mitigate Meltdown CPU vulnerability
A Separate page tables for userspace and kernelspace
A Need to find kernel page table base and write that to CR3
A We can use CR3 read IOCTL to leak Kernel CR3 value when building payload

IS THERE HOPE@
A AV industry

A What good is an AV when you can bypass it, and how can
the AV help stop this lunacy.

A Microsoft
A Virtualizationbased Security (VBS)
A Hypervisorenforced Code Integrity (HVCI)
A Device Guard
A Black List

Automating Detection

A Manually searching drivers can be tedious

A Can we automate the process?

A Symbolic execution with angr framework
A Got initial script working in about a day
A Works really well in some cases
A Combinatorial state explosion in others

import angr
import claripy

irp addr = 0x3000000
ioctl inbuf addr = 0x4000000

inctl_handle:_addr 0x110d8
rmsr_addr = 0Oxlldac

angr.Project ("WinRing0x64.sys", auto load libs=False)
state = p-factnry-call_state{addr=inctl_handle:_addr}

Automating Detection

A Testing out the idea...
A Create symbolic regions for parts of IRP
A Store those into symbolic memory
A And set appropriate pointers in execution state

irp buf = claripy.BVs('irp"', 8*0xd0).reversed
state.memory.store (irp addr, irp buf)

ioctl inbuf = claripy.BVS('ioctl inbuf', 1024).reversed

Etate.menary.starefiast;_inbuf_aad:, 1octl inbuf)

state.regs.rdx = 1rp addr
state.mem[state.regs.rdx+0x18].uinté4 t = ioctl inbuf addr

Automating Detection

A Testing out the idea...
A Create simulation manager based on state
A Explore states trying to reach the address of WRMSR opcode

A If found,show where the WRMSR arguments came from

m = p.factory.simulation manager (state)
m.explore (find=wrmsr addr)

W

if sm. found:
f = sm.found[0]

"RIP: %x" % f.solver.eval(f.regs.rip))

"MSE. ADDR: symbolic=%s, value=%s" % (f.regs.ecx.symbolic, f.regs.ecx))

"MSE. High DWORD: symbolic=%s, value=%s" % (f.regs.edx.symbolic, f.regs.edx))
R w DWORD: symbolic=%s, walue=%s" % (f.regs.eax.symbolic, f.regs.eax))

(angr) Jessefdemo:~5 time python3 wormhole.py

[... snipped many angr warnings ...]

EIP: 1ll4dac

MSR ADDR: symbolic=True, value=<BV32 iloctl inbuf 2 1024[31:0]>

MSR High DWORD: symbolic=True, value=<BV32 ioctl inbuf 2 1024[55:64]>
MSR Low DWORD: symbolic=True, value=<BV32 ioctl inbuf 2 1024[63:32]>

real Om4.450s
Om3.928s

SYsS Om0.523s

(angr) jessefdemo:~$

Automating Detection

A We can also automatically find WDM IOCTL handler function
A Set memory write breakpoint odrvobj>MajorFunctioril4]
A Explore states forward from driver entry point

def mem write hook(state):
ioctl handler addr = state.solver.eval (state.inspect.mem write expr)

state = p.factory.entry state ()
drv _obj buf = claripy.BVS('driver object', 8*0x150) .reversed
state.memory.store (drv_obj addr, drv obj buf)

state.regs.rcx = drv obj addr

state.inspect.b('mem write', mem write address=drv obj addrt+0Oxe(0, when=angr.BP AIFTER, action=mem write hook)

pA4

sm = p.factory.simulation manager (state)
sm.explore (n=500)

Automating Detection

A Automatically find IOCTL number and other constraints
A 10CTL num is at known offset in IRP
A Constraint tracking is very useful

A Can get spammed with overly complex constraints
A Angr can simplify constraints for you

[AsrDrv101.sys] Attempting to find path from 110a8 to WrCR at 11731
[AsrDrv10l.sys] Found path from 110a8 to 11731

RIP: 11731

TOCTL NUM: 222870 from <BV3Z2 irsp params ioctl num 337 32>

Found write to control register with arbitrary wvalue!

Write CR: target=cr4, symbolic=True, value=<BV&4 loctl inbuf 328 81
Constraints:

Input Buffer: <Boocl ioctl inbuf 328 8192[31: = 0x0>
Input Buffer: <Bool ioctl inbuf 328 8192[31:0] != 0x3>
Input Buffer: <Bool (0xfffffffd + ioctl inbuf 328 8152[31:0]) ==

92[127:64]>

Ox1>

Automating Detection

A Problems...
A Angruses VEX intermediate representation lifting
A Has apparently never been used to analyze privileged
code
A Decode error omdmsr/wrmsr, read/write CR,
read/write DR opcodes
A Can implement missing opcodes wilymratspotter

Automating Detection

A Problems...
A Current code only supports WDM drivers
A Have some ideas how to find WiDEtl handlers
A HookWdfVersionBindo fill WdfFunction§
A HookWdfFunctionfWdfloQueueCreafe
A Some drivers cause it to blow up and run out of memory

DISCLOSURES
| SEE BAD DRIVERS..

EVEN KNOW THEY'RE nnn nnmns'

DISCLOSURES

