

Jesse
Michael

Mickey
Shkatov

@JesseMichael @HackingThings

WHO ARE WE

AGENDA

ÅBeginning
Å .
Å .
Å .
Å .
ÅConclusions
ÅQ&A

Å Diego Juarez
Å https://www.secureauth.com/labs/advisories/asus-drivers-elevation-privilege-vulnerabilities
Å https://www.secureauth.com/labs/advisories/gigabyte-drivers-elevation-privilege-vulnerabilities
Å https://www.secureauth.com/labs/advisories/asrock-drivers-elevation-privilege-vulnerabilities

Å @ReWolf
Å https://github.com/rwfpl/rewolf-msi-exploit + Blog post link in Readme

Å @NOPAndRoll(Ryan Warns) / Timothy Harrison
Å https://downloads.immunityinc.com/infiltrate2019-slidepacks/ryan-warns-timothy-harrison-device-

driver-debauchery-msr-madness/MSR_Madness_v2.9_INFILTRATE.pptx
Å @SpecialHoang
Å https://medium.com/@fsx30/weaponizing-vulnerable-driver-for-privilege-escalation-gigabyte-edition-

e73ee523598b
Å @FuzzySec

Å https://www.fuzzysecurity.com/tutorials/expDev/23.html

PRIOR WORK

Å @matrosov
Å https://medium.com/@matrosov/dangerous-update-tools-c246f7299459

Å Matt Graeber
Å https://posts.specterops.io/threat-detection-using-windows-defender-application-control-device-guard-

in-audit-mode-602b48cd1c11
Å Dave Weston

Å https://github.com/dwizzzle/Presentations/blob/master/Bluehat%20Shanghai%20-
%20Advancing%20Windows%20Security.pdf

Å Gal Diskin
Å https://media.paloaltonetworks.com/lp/endpoint-security/blog/a-brief-analysis-of-microsoft-patchguard-

msr-protection.html
Å Cr4sh

Å https://github.com/Cr4sh/fwexpl

REFERENCES

BACKGROUND
Application

Windows
OS

Driver

Device

BACKGROUND
Application

Windows
OS

Driver

Device

R
E

Q
U

E
S

T

M
A

G
IC

R
E

Q
U

E
S

T

DeviceIoControl(dev, ioctl, inbuf, insize, ...)

IOCTLhandler in driver called with IRP struct
Å contains args passed from userspace

ÅWindows drivers
ÅSigned
ÅWHQL signed
ÅNew EV signing cert (A Must for Win10 signing process)

http://video.ch9.ms/sessions/winhec/2015/files/DDF202%20-%20Introduction%20to%20Windows%20Driver%20Signing,%20Publishing,%20Distribution%20and%20Servicing.pptx

http://video.ch9.ms/sessions/winhec/2015/files/DDF202%20-%20Introduction%20to%20Windows%20Driver%20Signing,%20Publishing,%20Distribution%20and%20Servicing.pptx

GETTING OUR OWN
Get started with the Hardware Developer Program
The Windows Hardware Developer Program allows you to certify your hardware for Windows and sign and publish
your drivers to Windows Update.

Å You must have an Extended Validation (EV) code signing certificate. Please check whether your company
already has a code signing certificate.If your company already has a certificate, have the certificate available.
You will need the certificate to sign files.If your company does not have a certificate, you will need to buy one
as part of the registration process.

Å You will need to sign in as a global administrator in your organization's Azure Active Directory. If you do not
know whether your organization has an Azure Active Directory,contact your IT department.If your organization
does not have an Azure Active Directory, you will be able to create one for free in the next step.

Å You must have the authority to sign legal agreements on behalf of your organization.

Get started with the Hardware Developer Program
The Windows Hardware Developer Program allows you to certify your hardware for Windows and sign and publish
your drivers to Windows Update.

Å You must have an Extended Validation (EV) code signing certificate. Please check whether your company
already has a code signing certificate.If your company already has a certificate, have the certificate available.
You will need the certificate to sign files.If your company does not have a certificate, you will need to buy one
as part of the registration process.

Å You will need to sign in as a global administrator in your organization's Azure Active Directory. If you do not
know whether your organization has an Azure Active Directory,contact your IT department.If your organization
does not have an Azure Active Directory, you will be able to create one for free in the next step.

Å You must have the authority to sign legal agreements on behalf of your organization.

GETTING OUR OWN

ÅRWEverything
ÅLoJax
ÅSlingshot
ÅGame Cheats and Anti-Cheats (CapComand others)
ÅMSI+ASUS+GIGABYTE+ASROCK

KNOWN THREATS

ÅUtility to access almost all hardware interfaces via software
ÅUser-space app + signed RwDrv.sys driver
ÅDriver acts as a privileged proxy to hardware interfaces
ÅAllows arbitrary access to privileged resources not intended

to be available to user-space

Read & Write Everything

ÅFirstUEFI malware found in the wild
Å Implant tool includes RwDrv.sys driver from RWEverything
ÅLoads driver to gain direct access to SPI controller in PCH
ÅUses direct SPI controller access to rewrite UEFI firmware

LoJax

ÅAPT campaign brought along its own malicious driver
ÅActive from 2012 through at least 2018
ÅExploited other drivers with read/write MSR to bypass Driver

Signing Enforcement to install kernel rootkit

Slingshot

Å Privilege escalation from Userspaceto Kernelspace
Å Bypass/disable Windows security mechanisms
Å Direct hardware access
Å Can potentially modify system and device firmware
Å Still have lots of issues with unsigned firmware

Motivations

Driver is already on system and loaded
Å Access to driver is controlled by policy configured by

driver itself
Å Many drivers allow access by non-admin

Attack Scenario #1

Driver is already on system and not loaded
Å Need admin privileges to load driver
Å Loaddriver via signed app with UAC from trusted vendor
Å Can also wait until admin process loads driver to avoid

needing admin privileges

Attack Scenario #2

Malware brings driver along with it
Å Needadmin privilegesto load driver
Å Loaddriver via signed app with UAC from trustedvendor
Å Can bring older version of driver
Å LoJax did this for in-the-wild campaign
Å Modified UEFI firmware to install persistent rootkit

Attack Scenario #3

1. Signed drivers
2. Focused on drivers from firmware/hardware vendors
3. Size(< 100KB)
4. rdmsr/wrmsr, mov crN, in/out opcodes are big hints
5. WindowsDriver Model vs Windows Driver Framework

Finding drivers

Windows Driver Model

Windows Driver Framework

Finding drivers

IoCreateDevicevs. WdmlibIoCreateDeviceSecure

Security Descriptor Definition Language (SDDL)
Å Used to specify security policy for driver

Example:
ÅD:P(A;;GA;;;SY)(A;;GA;;;BA)

DACL that allows:
Å GENERIC_ALL to Local System
Å GENERIC_ALL to Built-in Administrators

Finding drivers

ÅSpent 2 weeks looking for drivers
ÅWe skimmed though hundreds of files
ÅAt least 42 vulnerable signed x64 drivers
ÅFound others sincē_(Б)_/¯

Finding drivers

What can we do from user space with a bad driver?
Å Kernel virtual memory access
Å Physical memory access
Å MMIO access
Å MSR access
Å Control Register access
Å PCI device access
Å SMBUS access
Å And more...

NOW WHAT

Arbitrary Ring0 memcpy

ÅCanbe used to patch
kernel code and data
structures
ÅSteal tokens, elevate

privileges, etc
ÅPatchGuard can catch

some modifications,
but not all

Arbitrary PhysicalMemory Write

ÅCan perform MMIO access
to PCIe and other devices

ÅAnothermechanism to
patch kernel code and data
structures
ÅSteal tokens, elevate

privileges, etc
ÅPatchGuardcan catch

some modifications,
but not all
ÅPartial mitigation in

Win 10 1803

Lookup Physical Address from Virtual Address

ÅUseful when dealing with IOCTLs that
provide Read/Write using physical
addresses

Arbitrary MSR Read

Model Specific Registers
ÅOriginally used for "experimental" features not

guaranteed to be present in future processors
ÅSome MSRs have now been classified as architectural

and will be supported by all future processors
ÅMSRs can be per-package, per-core, or per-thread
ÅAccess to these registers are via rdmsrand wrmsr

opcodes
ÅOnly accessible by Ring0

Arbitrary MSR Write

Security-critical architectural MSRs
Å STAR (0xC0000081)

Å SYSCALL EIP address and Ring 0 and Ring 3 Segment base
Å LSTAR (0xC0000082)

Å The kernel's RIP for SYSCALL entry for 64 bit software
Å CSTAR (0xC0000083)

Å The kernel's RIP for SYSCALL entry in compatibility mode

Entrypoints used in transition from Ring3 to Ring0

Arbitrary Control Register Read

CR0 contains key processor control bits:
Å PE: Protected Mode Enable
Å WP: Write Protect
Å PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional security-relevant control bits:
Å UMIP: User-Mode Instruction Prevention
Å VMXE: Virtual Machine Extensions Enable
Å SMEP: Supervisor Mode Execution Protection Enable
Å SMAP: Supervisor Mode Access Protection Enable

Arbitrary Control Register Write

CR0 contains key processor control bits:
Å PE: Protected Mode Enable
Å WP: Write Protect
Å PG: Paging Enable

CR3 = Base of page table structures

CR4 contains additional security-relevant control bits:
Å UMIP: User-Mode Instruction Prevention
Å VMXE: Virtual Machine Extensions Enable
Å SMEP: Supervisor Mode Execution Protection Enable
Å SMAP: Supervisor Mode Access Protection Enable

Arbitrary IO Port Write

Å Impact is platform dependent
ÅCan potentially be used to modify UEFI and

devicefirmware
ÅServers may have ASPEED BMC with

Pantdownvulnerability which provides
read/write into BMC address space

ÅLaptops likely have embedded
controller (EC)reachable via IO port access

ÅCan potentially be used to perform legacy PCI
access by accessing ports 0xCF8/0xCFC

Arbitrary Legacy PCI Write

ÅImpact is platform dependent
ÅCanpotentially be used to modify UEFI and devicefirmware

ÅIssues with overlapping PCI device BAR over memory regions
ÅOverlapping PCI device over TPM region
ÅMemory hole attack

Kernel Code Execution via MSR

LSTAR MSR

User Memory Kernel Memory

Ring0 Entry Point

Kernel Code Execution via MSR

LSTAR MSR

User Memory Kernel Memory

Ring0 Payload

It's a little more complicated than that...

Supervisor Mode Execution Prevention (SMEP)

ÅFeature added to CPU to prevent kernel from executing code from user pages
ÅAttempting to execute code in user pages when in Ring0 causes page fault
ÅControlled by bit in CR4 register

Need to read CR4, clear CR4.SMEP bit, write back to CR4
ÅThis can be done via Read/Write CR4 IOCTL primitive or via ROP in payload

ÅPayload starts executing in Ring0, but hasn't switched to kernelspace yet
ÅNeed to execute swapgs as first instruction
ÅAlso need to execute swapgs before returning from kernel payload

ÅKernel Page Table Isolation (KPTI)
ÅNew protection to help mitigate Meltdown CPU vulnerability
ÅSeparate page tables for userspace and kernelspace
ÅNeed to find kernel page table base and write that to CR3
ÅWe can use CR3 read IOCTL to leak Kernel CR3 value when building payload

It's a little more complicated than that...

ÅAV industry
ÅWhat good is an AV when you can bypass it, and how can

the AV help stop this lunacy.

ÅMicrosoft
ÅVirtualization-based Security (VBS)
ÅHypervisor-enforced Code Integrity (HVCI)
ÅDevice Guard
ÅBlack List

IS THERE HOPE?

ÅManually searching drivers can be tedious
ÅCan we automate the process?
ÅSymbolic execution with angr framework
ÅGot initial script working in about a day
ÅWorks really well in some cases
ÅCombinatorial state explosion in others

Automating Detection

Automating Detection
Å Testing out the idea...
Å Load the driver into angr
Å Create a state object to start execution at IOCTL handler

Automating Detection
Å Testing out the idea...
Å Create symbolic regions for parts of IRP
Å Store those into symbolic memory
Å And set appropriate pointers in execution state

Automating Detection
Å Testing out the idea...
Å Create simulation manager based on state
Å Explore states trying to reach the address of WRMSR opcode
Å If found,show where the WRMSR arguments came from

Automating Detection
Å It worked!
Å Completed in less than five seconds
Å WRMSR address and value are both taken from input buffer

Automating Detection
Å We can also automatically find WDM IOCTL handler function
Å Set memory write breakpoint on drvobj->MajorFunction[14]
Å Explore states forward from driver entry point

Automating Detection
Å Automatically find IOCTL number and other constraints
Å IOCTL num is at known offset in IRP
Å Constraint tracking is very useful
Å Can get spammed with overly complex constraints
Å Angr can simplify constraints for you

Automating Detection
ÅProblems...
ÅAngruses VEX intermediate representation lifting
ÅHas apparently never been used to analyze privileged

code
ÅDecode error on rdmsr/wrmsr, read/write CR,

read/write DR opcodes
ÅCan implement missing opcodes with Gymratspotter

Automating Detection
ÅProblems...
ÅCurrent code only supports WDM drivers
ÅHave some ideas how to find WDF ioctl handlers
ÅHook WdfVersionBindto fill WdfFunctions[]
ÅHookWdfFunctions[WdfIoQueueCreate]

ÅSome drivers cause it to blow up and run out of memory

DISCLOSURES

DISCLOSURES

